
Practical
Session Types

Christophe De Troyer
Christophe Scholliers

Wolfgang De Meuter

1

2

JABBER 
POP3
SMTP

Session Types

State of the art

Calculi Programming Languages

Functional Calculi

Haskell, Scala, OCaml, Links,
Sill, C, Erlang, Go, Rust, Javaπ-calculus

Object-Oriented

3

Running Example
+

Session Types in a
Nutshell

4

5

Hand over ticket

Hand over passport

Hand over luggage

Receive boarding pass Boarding denied

!Ticket.!Passport.&<OK : ?BoardingPass.!Luggage.End,  
 NOK: ?String.End
>

6

Hand over ticket

Hand over passport

Hand over luggage

Receive boarding pass Boarding denied

!T = Send type T 
?T = Receive type T
. = Sequence

OK NOK

Duality

7

!Ticket.!Passport.&<OK : ?BoardingPass.!Luggage.End,  
 NOK: ?String.End >

?Ticket.?Passport.⊕<OK : !BoardingPass.?Luggage.End,  
 NOK: !String.End >

!T → ?T ?T → !T &<..> → ⊕<..> ⊕ <..> → &<..>

Modularity is
difficult

sestyp Checkin = ⊕<NORMAL: !Ticket.!Passport,
 FAST : !Barcode >.&<OK : ?BoardingPass.!Luggage.End, 
 NOK: End >

sendTicket airport = let ticket = grabTicket in send ticket airport

sendPassport airport = let passport = grabPassport in send passport airport

getBoardingPass airport = return (receive airport)

sendLuggage airport = let luggage = grabFromTrunk in send luggage airport ;

checkin airport = select NORMAL airport ;
 sendTicket ; sendPassport ;

 case airport
 OK = let boardingpass = getBoardingPass airport
 in
 sendLuggage airport ;
 close airport
 NOK = let error = receive airport
 in
 close airport ;
 error (format “Go back home: %s” error)

Type information explodes

sestyp Checkin = ⊕<NORMAL: !Ticket.!Passport,
 FAST : !Barcode >.&<OK : ?BoardingPass.!Luggage.End, 
 NOK: End >

sendTicket :: [ß:Checkin] Chan ß
 ->
 [ß:!Passport.&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
sendTicket airport = let ticket = grabTicket in send ticket airport

sendPassport :: [ß:!Passport.&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
 ->
 [ß:&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
sendPassport airport = let passport = grabPassport in send passport airport

getBoardingPass :: [ß:?BoardingPass.!Luggage.End] Chan ß
 ->
 [ß:!Luggage.End] Chan ß
getBoardingPass airport = return (receive airport)

sendLuggage :: [ß:!Luggage.End] Chan ß -> [ß:End] Chan ß
sendLuggage airport = let luggage = grabFromTrunk in send luggage airport ;

checkin :: [ß:Checkin] Chan ß -> [ß:/] ()
checkin airport = select NORMAL airport ;

 sendTicket ; sendPassport ;
 case airport
 OK = let boardingpass = getBoardingPass airport
 in
 sendLuggage airport ;
 close airport
 NOK = let error = receive airport
 in
 close airport ;
 error (format “Go back home: %s” error)

Refactor
Logic
Types

Improving modularity at the type
level in session type programs

• Polymorphism for full session types

• Pattern Matching

• Session types in System F

Session Types in
practice

10

doubleChan :: [ß:R, α:S] Chan α -> Chan ß -> ()Session Typed Function

A function
working on types

checkin :: [ß:S] Chan ß -> [ß:S’] Bool

Syntax of
prototype

implementation

A sample
program

12

session Checkin = !Ticket.!Passport.&<OK : ?BoardingPass.!Luggage.End, 
 NOK: End >

checkin :: [ß:Checkin] Chan ß -> [ß:End] Chan ß
checkin airport = let ticket = grabTicket
 passport = grabPassport
 luggage = grabFromTrunk
 in
 send ticket airport ;
 send passport airport ;
 case airport
 OK = let boardingpass = receive airport
 in
 send luggage airport ;
 close airport
 NOK = let err = receive airport
 in
 close airport ;
 error (format “Go back home: %s” err)

A sample
program

13

session Checkin = !Ticket.!Passport.&<OK : ?BoardingPass.!Luggage.End, 
 NOK: End >

checkin :: [ß:Checkin] Chan ß -> [ß:End] Chan ß
checkin airport = let ticket = grabTicket
 passport = grabPassport
 luggage = grabFromTrunk
 in
 send ticket airport ;
 send passport airport ;
 case airport
 OK = let boardingpass = receive airport
 in
 send luggage airport ;
 close airport
 NOK = let err = receive airport
 in
 close airport ;
 error (format “Go back home: %s” err)

A sample
program

14

session Checkin = !Ticket.!Passport.&<OK : ?BoardingPass.!Luggage.End, 
 NOK: End >

checkin :: [ß:Checkin] Chan ß -> [ß:End] Chan ß
checkin airport = let ticket = grabTicket
 passport = grabPassport
 luggage = grabFromTrunk
 in
 send ticket airport ;
 send passport airport ;
 case airport
 OK = let boardingpass = receive airport
 in
 send luggage airport ;
 close airport
 NOK = let err = receive airport
 in
 close airport ;
 error (format “Go back home: %s” err)

sendTicket :: [ß:Checkin] Chan ß
 ->
 [ß:!Passport.&<OK : ?BoardingPass.!Luggage.End, NOK:
End >] Chan ß
sendTicket airport = let ticket = grabTicket in send ticket airport

=

Modularity is
difficult

sestyp Checkin = ⊕<NORMAL: !Ticket.!Passport,
 FAST : !Barcode >.&<OK : ?BoardingPass.!Luggage.End, 
 NOK: End >

sendTicket airport = let ticket = grabTicket in send ticket airport

sendPassport airport = let passport = grabPassport in send passport airport

getBoardingPass airport = return (receive airport)

sendLuggage airport = let luggage = grabFromTrunk in send luggage airport ;

checkin airport = select NORMAL airport ;
 sendTicket ; sendPassport ;

 case airport
 OK = let boardingpass = getBoardingPass airport
 in
 sendLuggage airport ;
 close airport
 NOK = let error = receive airport
 in
 close airport ;
 error (format “Go back home: %s” error)

sestyp Checkin = ⊕<NORMAL: !Ticket.!Passport,
 FAST : !Barcode >.&<OK : ?BoardingPass.!Luggage.End, 
 NOK: End >

sendTicket :: [ß:Checkin] Chan ß
 ->
 [ß:!Passport.&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
sendTicket airport = let ticket = grabTicket in send ticket airport

sendPassport :: [ß:!Passport.&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
 ->
 [ß:&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
sendPassport airport = let passport = grabPassport in send passport airport

getBoardingPass :: [ß:?BoardingPass.!Luggage.End] Chan ß
 ->
 [ß:!Luggage.End] Chan ß
getBoardingPass airport = return (receive airport)

sendLuggage :: [ß:!Luggage.End] Chan ß -> [ß:End] Chan ß
sendLuggage airport = let luggage = grabFromTrunk in send luggage airport ;

checkin :: [ß:Checkin] Chan ß -> [ß:/] ()
checkin airport = select NORMAL airport ;

 sendTicket ; sendPassport ;
 case airport
 OK = let boardingpass = getBoardingPass airport
 in
 sendLuggage airport ;
 close airport
 NOK = let error = receive airport
 in
 close airport ;
 error (format “Go back home: %s” error)

Refactor

Type information explodes

Logic
Types

#1: Polymorphism
for session types

16

Polymorphism

\[ß:!Int.?Int]c -> send 5 csendBack :: ForAll T . [ß: ?T.!T.End] Chan ß -> [ß:End]()

Receive and send back

?T

!T

polymorphism

\[ß:!Int.?Int]c -> send 5 csendBack :: ForAll T,U . [ß: ?T.!U.End] Chan ß -> (T -> U) -> [ß:End]()
sendBack chn f = let incoming = receive chn
 outgoing = f incoming
 in
 send outgoing chn

Apply f to the received value and send it back

?T

!U

19

session Checkin = ⊕<NORMAL: !Ticket.!Passport,
 FAST : !Barcode >.&<OK : ?BoardingPass.!Luggage.End,  
 NOK: End >

customsHandbag :: [ß:?HandBag.⊕<OK: !HandBag, ERR: !Reason>.End] Chan ß -> [ß:End] ()
customsHandbag conveyorbelt = let handbag = receive conveyorbelt
 in
 if (containsLiquids? handbag)
 then select NOK conveyorbelt
 send “Not allowed!”
 else send handbag conveyorbelt

customsLuggage :: [ß:?Luggage.⊕<OK: !Luggage, ERR: !Reason>.End] Chan ß -> [ß:End] ()
customsLuggage conveyorbelt = let luggage = receive conveyorbelt
 in
 if (containsDrugs? handbag)
 then select NOK conveyorbelt
 send “Not allowed!”
 else send handbag conveyorbelt

polymorphism

Polymorphism
for session types

20

session Checkin = ⊕<NORMAL: !Ticket.!Passport,
 FAST : !Barcode >.&<OK : ?BoardingPass.!Luggage.End, 
 NOK: End >

checkWith :: [ß:?T.⊕<OK: !T, ERR: !Reason>.End] Chan ß -> (T -> Bool) -> [ß:End] ()
checkWith conveyorbelt f = let t = receive conveyorbelt
 in
 if (f t)
 then select ERR conveyorbelt
 send “Not allowed!”
 else send t conveyorbelt

customsHandbag :: [ß:?HandBag.⊕<OK: !HandBag.End, ERR: !Reason>.End] Chan ß -> [ß:End] ()
customsHandbag conveyorbelt = checkWith conveyorbelt containsLiquids?

customsLuggage :: [ß:?Luggage.⊕<OK: !Luggage, ERR: !Reason>.End] Chan ß -> [ß:End] ()
customsLuggage conveyorbelt = checkWith conveyorbelt containsDrugs?

#2: Pattern
Matching

21

Enforce Structural
constraints

\[ß:!Int.?Int]c -> send 5 cf :: [ß: S.!Int.U] Chan ß -> [ß:U] ()

“As long as the session type wants me to send an Int”

\[ß:!Int.?Int]c -> send 5 c

“As long as the channel offers these two choices”

h :: [ß: &<CH1: S, CH2: T>.U] Chan ß -> [ß:U] ()

A sample
program

23

sendTicket :: [ß:Checkin] Chan ß
 ->
 [ß:!Passport.&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
sendTicket airport = let ticket = grabTicket in send ticket airport

sendPassport :: [ß:!Passport.&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
 ->
 [ß:&<OK : ?BoardingPass.!Luggage.End, NOK: End >] Chan ß
sendPassport airport = let passport = grabPassport in send passport airport

getBoardingPass :: [ß:?BoardingPass.!Luggage.End] Chan ß
 ->
 [ß:!Luggage.End] Chan ß
getBoardingPass airport = return (receive airport)

A better sample
program

24

selectFastTrack :: [ß:⊕<FAST: S, NORMAL: S’>.S”] Chan ß -> [ß:S.S”] Chan ß
selectFastTrack airport = select FAST airport

sendTicket :: [ß:!Ticket.S] Chan ß -> [ß:S] Chan ß
sendTicket airport = let ticket = grabTicket in send ticket airport

sendPassport :: [ß:!Passport.S] Chan ß -> [ß:S] Chan ß
sendPassport airport = let passport = grabPassport in send passport airport

getBoardingPass :: [ß:?BoardingPass.S] Chan ß -> [ß:S] BoardingPass
getBoardingPass airport = return (receive airport)

[ß:⊕<FAST: S, NORMAL: S’>.S”]

[ß:?BoardingPass.S]

Thank you!
• Help session types transform with program

• Reduce type overhead

• Proof of Concept implementation

• Polymorphism for full session types

• Pattern matching (Structural Constraints)

• System F with session types

• All images taken from pixabay.com

25

http://pixabay.com

