PRACTICAL

SESSION TYPES

¥

CHRISTOPHE DE TROYER
CHRISTOPHE SCHOLLIERS
WOLFGANG DE MEUTER

Krlje T
Universiteit ———

1 UNIVERSITEIT
Brussel GENT



SESSION TYPES

JABBER
POP3
SMTP




STATE OF THE ART

Functional Calculi

Haskell, Scala, OCaml, Links,

n-calculus Sill, C, Erlang, Go, Rust, Java

Object-Oriented






Hand over ticket

Hand over passport

Receive boarding pass Boarding deniea

Hand over luggage




. IT =Sendtype T
Hand over ticket

?T = Receive type T
= Sequence

Hand over passport

OK NOK

Recelve boarding pass Boarding deniead

Hand over luggage

I'Ticket. !Passport.&<0K : ?7BoardingPass.!Luggage.End,
NOK: ?String.End
>



DUALITY

I'Ticket. !'Passport.&<0K : ?BoardingPass.!Luggage.End,
NOK: ?String.End

?Ticket.?Passport.e®<0K : !'BoardingPass.?Luggage.End,
NOK: !String.End >



MODULARITY IS
DIFFICULT
Types
Logic
Retactor

—

Type information explodes




IMPROVING MODULARITY AT THE TYPE
LEVEL IN SESSION TYPE PROGRAMS

+ Polymorphism for full session types

+ Pattern Matching

- Session types 1n System F



e . 2 .‘

te 2l
4 ™ty -»
el e fritioy

e 1o mane " VIRNDOTU content="widthedovice-ndlk, el walel § we cue B

* [{auicon.ico’ Ljpes” RN
.

ol reletghoricol jcon hrets
el tele’rcON hleix’tfavmm.ico' w\se='mgeu-mon's
It N
us\'-ﬁ—r*"""""‘ ll‘ ntk
\ &

PRACTICE

. (ad
¢t ® 4
nav . z
1as* ol ? vy
‘b.\ s..“avoﬁfapp ? '*A'ﬁ.w
g1 3ot T e & 0 pider®"
‘ 18t 0t rand 18
PIah "l.' Class
h €
<)
"dl\’ : o ﬁ".'" v
"f. ™ : » ' ‘
: " o o W
W »



A FUNCTION
WORKING ON TYPES

Session Typed Function

checkin :: [R:S] Chan B -> [R:S'] Bool

Syntax of
prototype
Implementation




A SAMPLE
PROGRAM

session Checkin = !Ticket.!Passport.&<OK : ?BoardingPass.!Luggage.End,
NOK: End >
checkin :: [B:Checkin] Chan B8 -> [B:End] Chan B
checkin airport = let ticket = grabTicket
passport = grabPassport
luggage = grabFromTrunk

1n
send ticket airport ;
send passport airport ;
case airport
OK = let boardingpass = receive airport
1n
send luggage airport ;
close airport
NOK = let err = receive airport
1n
close airport ;
error (format “Go back home: %s” err)

12



A SAMPLE
PROGRAM

session Checkin = !Ticket.!Passport.&<OK : ?BoardingPass.!Luggage.End,
NOK: End >

checkin :: [B:Checkin] Chan B -> [B:End] Chan B
checkin airport = let ticket = grabTicket
passport = grabPassport
luggage = grabFromTrunk

f;send ticket airport ; EL

- p R
J - 7 < U S & v U

case airport
OK = let boardingpass = receive airport
1n
send luggage airport ;
close airport
NOK = let err = receive airport
1n
close airport ;
error (format “Go back home: %s” err)

13



A SAMPLE
PROGRAM

session Checkin = !Ticket.!Passport.&<OK : ?BoardingPass.!Luggage.End,

luggage grabFromTrunk

M s ARt L B OF Raila

NOK: End >
checkin :: [B:Checkin] Chan B -> [B:End] Chan B
checkin airport = let ticket = grabTicket
passport = grabPassport
sendTicket airport = let ticket = grabTicket in send ticket airport

< " A < N U

case airport
OK = let boardingpass = receive airport
1n
send luggage airport ;
close airport
NOK = let err = receive airport
in

close airport ;
error (format “Go back home: %s” err)

14



MODULARITY IS
DIFFICULT
Types
Logic
Refactor

—_—

Type information explodes




: POLYMORPHISM
FOR SESSION TYPES




POLYMORPHISM

Receive and send back

sendBack :: ForAll T . [R: ?T.!T.End] Chan B -> [R:End]()




POLYMORPHISM

Apply f to the received value and send it back

sendBack :: ForAll T,U . [R: ?T.!'U.End] Chan B -> (T =-> U) -> [R:End]()
sendBack chn f = let 1ncoming = receilve chn
outgoing = f incoming
1n
send outgoing chn




POLYMORPHISM

session Checkin = ®<NORMAL: !Ticket.!Passport,

FAST : !Barcode >.&<0K : ?BoardingPass.!Luggage.End,
NOK: End >

customsHandbag :: [B:?HandBag.®<OK: !HandBag, ERR: !Reason>.End] Chan B -> [B:End] ()
customsHandbag conveyorbelt = let handbag = receive conveyorbelt
in
if (containsLiquids? handbag)
then select NOK conveyorbelt
send “Not allowed!”
else send handbag conveyorbelt

customsLuggage :: [B:?Luggage.®<0K: !Luggage, ERR: !Reason>.End] Chan B -> [B:End] ()
customsLuggage conveyorbelt = let luggage = receive conveyorbelt
in
if (containsDrugs? handbag)
then select NOK conveyorbelt
send “Not allowed!”
else send handbag conveyorbelt

19



POLYMORPHISM
FOR SESSION TYPES

session Checkin = ®<NORMAL: !Ticket.!Passport,

FAST : !Barcode >.8&<0K : ?BoardingPass.!Luggage.End,
NOK: End >

checkWith :: [B:?T.®<O0K: !T, ERR: !Reason>.End] Chan B -> (T -> Bool) -> [B:End] ()
checkWith conveyorbelt f = let t = receive conveyorbelt
in
if (f t)
then select ERR conveyorbelt
send “Not allowed!”
else send t conveyorbelt

customsHandbag :: [B:?HandBag.®<O0K: !HandBag.End, ERR: !Reason>.End] Chan B -> [B:End] ()
customsHandbag conveyorbelt = checkWith conveyorbelt containsLiquids?

customsLuggage :: [B:?Luggage.®<0K: !Luggage, ERR: !'Reason>.End] Chan B -> [B:End] ()
customsLuggage conveyorbelt = checkWith conveyorbelt containsDrugs?

20



#2: PATTERN
' MATCHING

‘ ‘ /




ENFORCE STRUCTURAL
CONSTRAINTS

“As long as the session type wants me to send an Int”

f :: [R: S.'Int.U] Chan B -> [R:U] ()

“As long as the channel offers these two choices”

:: [BR: §<CH1: S, CH2: T>.U] Chan B -> [R:U] ()




A SAMPLE
PROGRAM

sendTicket :: [B:Checkin] Chan B3

->

[B:!Passport.&<0K : ?BoardingPass.!Luggage.End, NOK: End >] Chan B3
sendTicket airport = let ticket = grabTicket in send ticket airport

sendPassport :: [B:!Passport.&<O0K : ?BoardingPass.!Luggage.End, NOK: End >] Chan B
->
[B:&<0K : ?BoardingPass.!Luggage.End, NOK: End >] Chan B3
sendPassport airport = let passport = grabPassport in send passport airport

getBoardingPass :: [B:?BoardingPass.!Luggage.End] Chan B3
->
[B:!Luggage.End] Chan B
getBoardingPass airport = return (receive airport)

23



[3:®<FAST: S, NORMAL: S’>.S”]

selectFastTrack :: [B:®<FAST: S, NORMAL: S’>.S”] Chan B -> [3:S.S”] Chan B3
selectFastTrack airport = select FAST airport

sendTicket :: [B:!Ticket.S] Chan B -> [B:S] Chan B3
sendTicket airport = let ticket = grabTicket in send ticket airport

sendPassport :: [B:!Passport.S] Chan B8 -> [B:S] Chan B3
sendPassport airport = let passport = grabPassport in send passport airport

getBoardingPass :: [B:?BoardingPass.S] Chan B -> [B:S] BoardingPass
getBoardingPass airport = return (receive airport)

[B:?BoardingPass.S]




THANK YOU!

* Help session types transform with program
- Reduce type overhead

* Proof of Concept implementation

* Polymorphism for full session types

» Pattern matching (Structural Constraints)

+ System F with session types

- All images taken from pixabay.com

25


http://pixabay.com

