
Building IoT Systems Using Distributed First-Class
Reactive Programming

Christophe De Troyer
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
cdetroye@vub.ac.be

Jens Nicolay
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
jnicolay@vub.ac.be

Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
wdmeuter@vub.ac.be

Abstract—Contemporary IoT systems are challenging to de-
velop, deploy, and maintain. This is because of their ever-
increasing scale, dynamic network topologies, heterogeneity and
resource constraints of the involved devices, and failures that may
occur as a result of these characteristics. Existing approaches are
either not at the right level of abstraction, require developers
to learn specialized languages, or miss certain key features to
address all these challenges in a uniform manner. In this paper
we leverage reactive programming and code mobility to support
the entire life-cycle of large-scale IoT systems. Our approach is
based on existing programming technologies and offers simple
and composable abstractions to developers. We implemented
our approach in a middleware called Potato and used it to
develop and deploy an IoT application on a Raspberry Pi cluster.
We found that using Potato reduces much of the accidental
complexity associated with developing and deploying IoT systems,
resulting in clean and maintainable programs.

Index Terms—iot, code mobility, observables, reactive pro-
gramming

I. INTRODUCTION

IoT systems tightly integrate physical and computational
processes, and cover a wide range of applications includ-
ing building automation, personalized healthcare, intelligent
transport, sustainable environment, and disaster recovery [12].
Because of their characteristics, and despite technological
software and hardware advances, large-scale IoT applications
are still challenging to develop, monitor, and maintain.

• IoT systems have grown to a massive scale [10]. For
example, every room in a smart office building now
is equipped with temperature sensors, air conditioning
units, motion sensors, electronic access control, etc. At
such a massive scale a node-centric approach [16], in
which nodes are programmed and addressed in a largely
individual fashion at a low level of abstraction, becomes
unwieldy.

• IoT systems usually involve a dynamic network topol-
ogy, in which nodes may join or leave the network at
any moment, for example when they represent mobile
devices such as smartphones. Therefore, developers need
elegant abstractions to deal with frequent connections and
disconnections.

• Compared to mainstream computing platforms, the re-
source constraints of devices in an IoT system are much
more stringent. IoT devices often operate for long periods

on a limited or less reliable power supply, causing them
to (temporarily) disconnect from the network.

• Most IoT systems consist of heterogeneous device types,
including any combination of micro-controllers, embed-
ded devices, smartphones, and full-fledged servers. De-
velopers should, however, not be concerned with every
technical detail of how devices operate and communicate,
but instead should be able to abstract over these devices
and primarily focus on their control and data handling.

• The combination of all previous characteristics results in
a complex and dynamic environment in which failures
are not merely possible, but rather a given. This means
developers need a more elegant way than a try/catch
construct, for example, to handle every potential failure,
especially when it is transient in nature.

A. Problem

State-of-the-art programming approaches for IoT applica-
tions already attempts to address most or all of the challenges
outlined above, but not always in a satisfactory way. We
identified three shortcomings in existing related work.

1) Wrong level of abstraction. Model-driven development
approaches (e.g., [6, 5, 8, 13]) and declarative query
languages (e.g., [14, 18]) offer high levels of abstraction,
but introduce much overhead and are less flexible and
extensible. Implementing new application logic in these
systems is not directly modeled or requires extensive
modifications to the infrastructure (e.g., parsers, query
engines, . . . ) [11]. On the other hand, using a (low-level)
general purpose language may offer too little abstraction,
requiring developers to write much boilerplate code
(e.g., [7]).

2) Use of single-purpose, specialized languages. Model-
driven and macroprogramming approaches require de-
velopers to learn one or more single-purpose, specialized
languages to develop IoT applications (e.g., [15, 6]).
Developer tools, libraries, and documentation for these
languages may be lacking and represent a considerable
development effort to create and maintain. Requiring
developers to learn and understand a new language may
also hamper adoption.



3) Lack of features to support the entire life-cycle in a uni-
form way. Libraries and frameworks that are suitable to
express application logic may miss certain features such
as code mobility to support the entire life-cycle of an
IoT system (including deployment and maintenance) in a
uniform manner. Some approaches that offer a network-
centric view of an IoT application (e.g., [11, 15]) still
rely on compilation from network-centric to node-centric
code, which reduces flexibility.

B. Overview of our approach

This paper presents an approach to facilitate the develop-
ment, deployment, and maintenance of large-scale IoT ap-
plications based on distributed reactive programming. In this
approach, IoT systems are considered to be a dynamic set of
observable event streams. All important abstractions, such as
the network, nodes, and channels over which they communi-
cate, are observables. IoT applications can then be expressed
as a collection of mostly functional programs that transform
and compose data streams produced by these observables.
Furthermore, both programs and observables are first-class
and mobile, meaning that they can be stored, copied, and
transmitted between nodes. We implemented this approach in
a middleware called Potato.

Like the existing approaches, Potato helps developers in
overcoming the challenges of developing and deploying large-
scale IoT applications. More in particular, Potato has the
following set of features to overcome the shortcomings we
identified in existing work.

• Simple and composable abstractions. Potato offers simple
and composable abstractions to developers. On the one
hand, developers can use rich, high-level abstractions
provided by Potato to reduce boilerplate code. On the
other hand, developers can also define and compose their
own abstractions.

• Use of existing and established programming technology.
Potato is built using existing and well-established pro-
gramming technology, so that developers are not required
to learn single-purpose, specialized languages.

• Support for the entire life-cycle in a uniform manner.
Potato contains the right feature set to support the entire
life-cycle of large-scale IoT systems, including deploy-
ment and maintenance, making it suitable for use in a
DevOps context.

The goal of Potato is to reduce much of the accidental
complexity associated with the construction of IoT systems.
This should result in clean and maintainable code and scripts
to develop, deploy, and maintain IoT applications.

Our main conceptual contribution is the design of a
distributed reactive programming approach combining event
streams and code mobility for building IoT applications. Our
technical contribution consists of the implementation of Potato
based on existing and established programming technology,
and its validation for the construction and deployment of IoT
applications.

TABLE I
OVERVIEW OF THE USE OF OBSERVABLES AND SUBJECTS IN POTATO.

Observable Subject

Network Observe network events Broadcast events
Remote node Observe remote node events Deploy code
Local node (Implicit evaluation) Emit node events

C. Overview of this paper

We first introduce the main features of Potato (Section II),
and then demonstrate how applications are typically developed
and deployed in Potato (Section III). We then discuss how
we evaluated Potato (Section IV) and discuss related work
(Section V). To conclude the paper, we identify its current
limitations and avenues for future research (Section VI).

II. OVERVIEW OF POTATO

Potato is a middleware, implemented in Elixir [2], for
developing and deploying IoT applications. Elixir runs on
BEAM [3], the Erlang VM. Erlang and related technologies
are proven technologies in the realm of large-scale distributed
programs. In addition to devices supporting a generic x86
platform, Elixir also runs on small devices such as Raspberry
Pis, Lego EV3, and BeagleBone boards. Even smaller, more
resource-constrained devices like micro-controllers that run C
can also participate in an Elixir application by supporting
only parts of Potato’s functionality. Such devices could, for
example, (only) support data transmission if they implement
the Erlang distribution protocol [17], which is available as a
library.

In the remainder of this section we present the basic building
blocks of Potato.

A. Reactive programming

Reactive programming is a programming paradigm that
maps well on the event-driven nature of IoT, as IoT appli-
cations can be regarded as an infinite feedback loop between
event generators and event handlers. Potato implements the
ReactiveX API [1] for asynchronous programming with ob-
servable streams. ReactiveX enables the composition, trans-
formation, and consumption of asynchronous data streams and
events. The API is well documented and has been implemented
for popular programming languages, such as JavaScript, Java,
C#, and Scala.

B. Observables and subjects

An observable is a value in the host programming language
(Elixir, in case of Potato) that produces discrete values over a
period of time. An observer can subscribe to an observable to
react to these values by implementing three methods: onNext
whenever the observable emits an item, onError when the
observable has encountered an error, and onCompleted when it
no longer produces any more values and no error has occurred.
Composition of observables happens by means of operators to
create a dedicated stream. A subject is both an observable
(it emits values) and an observer (it can subscribe to other



1 network ()
2 |> filter(fn {event , n} ->
3 n.type == :thermometer
4 end)
5 |> map(fn {event , n} ->
6 case event do
7 :join ->
8 IO.puts "Temp present: #{n.uuid}"
9 :leave ->
10 IO.puts "Temp left: #{n.uuid}"
11 end
12 end)

Fig. 1. Print out all network events for temperature sensors on the network.

observables), and additionally implements a next method to
put a value on the stream.

Observables and subjects form the foundation of any Potato
application, and most of the values offered by Potato assume
one or both of these roles. Table I gives an overview of
how observables and subjects are used in Potato, while the
remainder of this section presents the details.

C. Network

The network observable provides the starting point of most
Potato applications. It emits an event as soon as a new node
either joins or leaves the network. A network event therefore is
a tuple of values (event, node) consisting of a remote node
object and either a :join or a :leave event.

The network observable is a so-called hot observable,
which means it starts producing values as soon it is created.
However, this does not allow a program to obtain an overview
of the current state of the network (i.e., all connected devices).
Potato therefore exposes the network as a function network,
which is a thin wrapper around the network observable that
prepends all the nodes to the network event stream that
are currently connected to the system, using ReactiveX’s
starts_with operator.

The program in Figure 1 prints out all the network events of
thermometers in the network. The filter operator is used to
filter out all the nodes of the type :thermometer, and operator
map to print the network event type and the unique identifier
of a thermometer to the console. The “pipe operator” in Elixir
(|>) calls the function on its right with the value of the left
side as first argument. For example, 1 |> add(2) is equivalent
to add(1, 2).

The network can also be addressed as a subject to broadcast
events to all nodes in the network, but due to space constraints
we omit discussions and examples of this functionality in this
paper.

D. Nodes

Every device that participates as a node in a Potato appli-
cation must run an instance of Potato, and therefore nodes
represent Potato runtimes in a network. A node is local
if it represents the underlying Potato runtime in which it
appears, and is obtained by calling function myself(). A

1 %{
2 name: "Wolf 's phone",
3 uuid: "d4384f68 ..",
4 type: :phone,
5 hardware: android,
6 location: :roaming
7 }

Fig. 2. Example node descriptor for a smartphone.

1 thermometers =
2 network ()
3 |> filter(fn {event , n} ->
4 n.type == :thermometer
5 && event == :join
6 end)
7 |> map(fn {_, thermometer} ->
8 thermometer
9 |> Obs.map(fn e ->
10 case e do
11 {:temperature, t} ->
12 ... # process temperature values
13 end
14 end)
15 end)

Fig. 3. Observe and process a stream of temperatures.

node is remote if it represents another Potato runtime than
the underlying one, independent of where this runtime is
(physically) executing. Consequently, all nodes obtained from
network are remote nodes. Every node can assume the role of
a subject, while a remote nodes can additionally assume the
role of an observable.

A node is represented as an immutable struct of static
properties. In fact, this set of static node properties is the only
configuration a Potato runtime expects at startup. Although the
static properties are user-defined and depend on the applica-
tion, typically they will include properties such as a unique
identifier, the node name, the device type, and the type of
hardware.

Figure 2 shows an example of a node descriptor for a
smartphone. Structs are an extension of maps in Elixir, and
the %{. . .} syntax denotes a struct literal. The :sym syntax
denotes atoms, whose value is their name.

1) Observing remote node events: Remote nodes on the
network are observables that emit node events. Suppose that
thermometers is an observable that emits thermometer nodes.
Figure 3 illustrates how remote nodes can be used as observ-
ables to obtain their emitted values.

2) Emitting local node events: Each Potato application
node has a single local subject, which is visible as an observ-
able to the rest of the network. The local subject is used to
emit events to the other nodes in the network that are explicitly
subscribed to this subject. A node is free to emit any type
and amount of events. Emitting events is typically done by
wrapping the data in a tuple. For example, temperature sensors
could emit events of the form (:temperature, t) on the net-



1 devices = # all joining devices
2 network ()
3 |> Obs.filter(f&(match ?({:join, _}, &1))
4
5 devices # print all node events
6 |> Obs.map(fn {_, n} ->
7 n |> Obs.map(&IO.puts /1)
8 end)
9
10 # deploy program that emits :helloworld

event
11 devices
12 |> Obs.map(fn {_, n} ->
13 Subject.next(n,
14 program do
15 Subject.next(myself (), :helloworld)
16 end)
17 end)
18 end

Fig. 4. “Hello world” example of remote code deployment.

work, where :temperature is the tag and t is a temperature
value. As another example, the program in Figure 4 emits a
:helloworld notification (line 14) by accessing the local node
as a subject.

3) Code deployment: Code deployment is the act of send-
ing an expression or program from one Potato runtime to
another. Any Elixir expression can be sent to a remote node
by means of calling next() on its remote subject. The
receiving node will evaluate the expression in its local Potato
environment (if it supports this functionality).

The program in Figure 4 first subscribes an observer that
prints all node events to every node that joins the network
(lines 5–8). Then, a program that emits a :helloworld event
is deployed on every joining node (lines 11–18). Although
they represent the same underlying node, in this program there
are two different subjects accessed. The subject on line 13 is a
remote node and is used to deploy a program, while the subject
on line 15 is the same but a local node from the perspective of
the node on which the program was deployed, and therefore
emits an event for that node.

The current implementation of Potato passes the data con-
text by copy. This means that all the values captured in the
scope of a first-class expression are copied at the moment
the expression is sent to a remote destination. This approach
presents no additional difficulties for captured observable
values such as nodes, because they are essentially represented
as a process identifier by the underlying Elixir runtime and
are distributed transparently.

Because observables are first-class and distributed in Potato,
nodes can set up and expose dedicated observable data streams
themselves and notify observers of this fact using “regular”
node events described so far. In this scenario a more clear
separation of concerns is achieved by using different observ-
ables for different purposes (e.g., sensor data streams vs. other
notifications). This may also avoid congestion in applications
that transmit large amounts of data because less events need

1 raspberrypis =
2 network ()
3 |> Obs.filter (&( match ?({:join, _}, &1)))
4 |> Obs.filter(fn {:join, n} ->
5 n.type == :pi2 end)
6 |> Obs.distinct (&Preds.same_node ?/2)

Fig. 5. Designate all the Raspberry Pis in the network at most once.

to be broadcasted to the entire network.
Observables are implemented as Elixir actors, and therefore

enjoy the same guarantees offered by the underlying VM.
In particular, messages sent to observables are guaranteed
to arrive in the order they are sent, or not delivered at all.
Furthermore, if a node in the network fails, a program is bound
to be notified of this failure.

III. BUILDING APPLICATIONS WITH POTATO

In this section we explain how to build a small but complete
application in Potato that computes the average temperature
based on the readings of a arbitrary and dynamic number
of temperature sensors in a network, each one connected to
a Raspberry Pi (RPI). Similar to cloud-based applications, a
Potato application is run on a single so-called “master” node.
All the code for the application can therefore be developed
using a holistic view of the application and its network on the
master node, while other nodes are programmed by means of
remote code deployment from within the application itself.

In what follows we discuss five important issues that IoT
applications typically have to deal with: designation of nodes,
deployment of programs, observation of data, and handling
reconnects and failures.

A. Designation of nodes

The first part of our application is to designate all the RPIs
using an observable, as illustrated in Figure 5. To deploy a
program on all the currently connected RPIs, only the :join
events from the network are of interest (line 3). Additionally,
all devices that are not RPIs are filtered out (line 4). Finally,
because a node can reconnect to the system at any point in
time, thereby producing a :join event, these duplicate events
are filtered out in order to designate each node only once (line
6).

B. Deployment of programs

The next step is deploying logic on all RPIs. Figure 6
deploys a program that continuously reads out the temperature
value from the sensor and publishes this value to the network.

First, the binary file that actually reads out the value from
a connected temperature sensor is read into memory (lines 1–
2). The remainder of the program deploys (line 6) a first-class
program (lines 7–15) that first writes the binary file (line 8)
and then continuously emits temperature values (lines 10–13).
The latter is accomplished by applying operator each over
the infinite observable created on line 10. The temperature is
read out by calling the binary using function read_t() (code



1 name = "pi2_temp.bin"
2 {:ok, bin} = File.read(name)
3
4 designated = raspberrypis
5 |> Obs.map(fn {_, node} -> node end)
6 |> Subject.next(node ,
7 program do
8 write_binary_to_file(bin , name)
9
10 Obs.range(1, :infinity)
11 |> Obs.each(fn _ ->
12 Subject.next(myself (),
13 {:temp, read_t ()})
14 end)
15 end)
16 end)

Fig. 6. Deploy a program on all RPIs to read and publish temperature values.

1 network ()
2 |> snapshot ()
3 |> Obs.map(&Obs.merge_n /1)
4 |> Obs.switch ()
5 |> Obs.filter (& Kernel.match ?({:temp, _},&1))
6 |> Obs.map(& Kernel.elem(&1, 1))
7 |> Obs.chunk (5000)
8 |> Obs.map(&Enums.average /1)

Fig. 7. Observing and averaging temperature values.

omitted for brevity). Every temperature value is emitted as a
node event by calling next() on the local node subject (lines
12–13).

C. Observation of events

When the program for reading and emitting temperature
values is deployed on all RPIs, the produced temperature
values have to be observed and aggregated to compute the
average. Figure 7 shows the code required to turn observed
temperature values into a single local observable that streams
the average temperature every 5 seconds.

First, snapshot() turns a stream of joining and leaving de-
vices into an observable that emits sets of currently connected
devices (line 2). Every time the network updates, a new set of
currently connected nodes will be emitted.

Then, all nodes in every snapshot are merged into a single
observable (line 3). Merging combines the output of multiple
input observables into a single observable. Next, the function
switch is called to transform the higher-order observable
resulting from the merge into an observable that emits the
values emitted by the last created merged observable (line 4).
From this observable all values that are not tagged with :temp
are filtered out and stripped of their tag (lines 5–6). Finally,
the temperature values are chunked into lists every 5 seconds
(line 7), and the average of the resulting sets is computed (line
8).

1 disconnects =
2 network ()
3 |> Obs.filter (&( match ?({:part , _}, &1)))
4 |> Obs.map(fn {_, n} -> n end)
5 joins =
6 network ()
7 |> Obs.filter (&( match ?({:join , _}, &1)))
8 |> Obs.map(fn {_, n} -> n end)
9
10 seen_once =
11 joins
12 |> Obs.scan(fn v, acc ->
13 Enum.uniq_by ([v] ++ acc , &L.uuid /1)
14 end , [])
15
16 reconnects =
17 joins
18 |> Obs.withLatestFrom(seen_once)
19 |> Obs.map(fn {n, seen} ->
20 if any?(seen , &same?(n, &1)) do
21 n
22 end)
23 |> Obs.filter (&(&1 = nil))

Fig. 8. Observe reconnecting nodes.

D. Handling reconnects

Figure 8 shows how to construct an observable reconnects
in Potato that emits devices that reconnect instead of connect-
ing for the first time, illustrating that observables in Potato
are powerful enough to build higher-level abstractions upon.
Additionally, the created observable can be used to implement
more complex failure handling techniques, as we will see later.

First, observables disconnects and joins emit joined
nodes and disconnected nodes , respectively (lines 1–8). Next,
observable seen_once emits a set of nodes that have connected
at least once during program execution, and does so whenever
this set grows (lines 10–14). The three observables created so
far are combined into an observable reconnects that emits re-
connecting nodes. Operator withLatestFrom combines source
observable joins with input observable seen_once. The result
is an observable that updates only when joins updates,
emitting the joining node coupled to the last value emitted
by seen_once. A function is then mapped over the resulting
stream of tuples of joining nodes with the set of already seen
nodes to checks whether the joining node is in the set of
already seen nodes. If this is the case, nil is emitted; otherwise
the joining node is emitted. Finally, nil values are filtered out
of the resulting stream.

E. Handling failures

Let’s assume in our example application that if a node re-
connects within a fixed interval of 30 seconds after deploying,
the deployment has failed. Figure 9 shows the code needed
to monitor for this kind of failure. The example assumes that
observable designated, which emits every node to which a
program has been deployed and was created in Figure 6, is in
scope (line 1) Observables l and r stream sets of designated



1 l = Obs.scan(designated , &([&1 | &2]), [])
2
3 r = Obs.scan(reconnected , &([&1 | &2]), [])
4 |> Obs.map(fn ns ->
5 Enum.uniq_by(ns, &L.uuid /1) end)
6
7 timeouts = Obs.combinelatest(l, r)
8 |> Obs.merge(Obs.from([ :timeout ]) |> Obs.

delay (30000))
9 |> Obs.map(fn v ->
10 case v do
11 {deployed , reconnected} ->
12 Enums.intersect(deployed ,

reconnected , &P.same
?/2)

13 |> Enum.map(fn node ->
14 handle_failure(node)
15 end)
16 :timeout ->
17 Observable.unsubscribe ()
18 end
19 end)

Fig. 9. Observe deployment timeouts.

nodes and reconnected nodes, respectively. These sets are
updated as soon as a new node reconnects, or as soon as
a new node is designated. Observables l and r are then
merged with an observable that will stream a single value,
:timeout, after 30 seconds (line 8). This merge results in an
observable that streams sets of designated nodes that are paired
with lists of reconnected nodes, for 30 seconds. Intuitively,
as soon as a node is emitted by designated, and it is also
present in reconnected, the deployment will have failed. The
failure can then be handled accordingly (line 14). Finally, if
the observable emits the :timeout value, the monitoring for
reconnects should stop, because the window has closed. We
garbage collect the observable by means of unsubscribe (line
17).

This code example shows how we can construct elaborate
failure handling approaches, by means of :leave and :join
messages. Another approach, for example, could be to monitor
all nodes that start emitting temperature values. As soon as
a timeframe has passed in which no temperature value was
received, a deployment can be considered to be a failure. The
failure handling can be catered towards each use case, while
generic failure handling can be hidden behind abstractions.

IV. VALIDATION

In this section we discuss our validation of Potato by
implementing a Smart Office use case commonly found in
literature (e.g., [6, 15, 4]). After presenting our Smart Office
use case (Section IV-A, we analyze accidental and essential
complexity (Section IV-B1) of the resulting application in
Potato.

A. Use Case

The use case consists of modeling a large office building
that is equipped with smart technology in every room. This

TABLE II
LISTING OF ALL THE HARDWARE USED IN THE SMART OFFICE USE CASE.

Type Component Interaction Hardware

Sensor Temperature (AM2302) Stream Raspberry Pi
Sensor Smoke (MQ-X) Stream Raspberry Pi

Actuator Heating Command Raspberry Pi
Actuator Alarm Command Raspberry Pi

Webservice Yahoo Weather Req/Resp External
Sensor RFID (RC522) Event Raspberry Pi
Control Authorative Unit N/A Unix Server

use case is representative because it is deployed on a large
scale, consists of a network of actuators and sensors, and has
at least one general-purpose computing device serving as a
control unit in addition to a large number of heterogenous
devices that have to communicate with each other.

1) Description: We assume every room in the building
is equipped with a temperature sensor, a humidity sensor, a
smoke detector, an alarm, and an air conditioning unit. All
these devices are connected through the LAN network of the
building. There is a central general-purpose computing unit
that serves as the controller for the network. The controller
publishes the data of the system in JSON by means of a
REST endpoint to be able to create a dashboard to display
the status of the network. Once the temperature in a particular
room exceeds a given threshold set by the central controller,
the room’s air conditioning unit will attempt to bring the
temperature back within a specified range. In case smoke is
detected in any of the rooms, the alarms in all rooms will
sound, and the control unit is also notified of this event to send
out the appropriate notifications to the outside world. Each
door of each room is equipped with an RFID reader to unlock
its doors. Once a door is unlocked, the central controller is
notified of the presence of a given person.

We implemented and executed the Smart Office application
on a cluster of 160 Raspberry Pis (RPIs), in which each
node represents a single RPI running an instance of the
Potato runtime. The source code for our application is publicly
available1. Table II summarizes the hardware we used to run
our experiments.

2) Data flow: The use case has a very specific data flow in
which data is exchanged between specific recipients, instead
of broadcasting it to the system. Furthermore, the data being
sent from an observable to an observer is directly routed
between these two nodes. Therefore an application between
two nodes forms an autonomous system, which has no need
for a network connection with the master node other than for
code deployment.

Once the initial application has been executed on the master
node, all the components of the network will either start
working autonomously to produce data for other components,
or will listen to sensors to perform actions.

Thermometers, hygrometers, and smoke detectors offer their
sensory readings to the network once every second. Data is

1https://gitlab.soft.vub.ac.be/cdetroye/potato

https://gitlab.soft.vub.ac.be/cdetroye/potato


only sent to the nodes that are subscribed to the observable.
The RFID reader works in a similar fashion, producing a user
identifier every time a person moves a badge over the reader.

HVAC systems determine which thermometer is in their
physical vicinity, based on the static properties of the devices,
and will then subscribe to that thermometer its readings. Once
the temperature exceeds a certain threshold, the HVAC system
will bring the temperature back within the allowed limits. After
deployment by the master node, the HVAC system and the
thermometer form an autonomous system, and only require a
connection between the two of them.

For sounding the alarms a program is deployed that listens
to a specific “alarm” subject on the master node. The master
node listens to all the smoke detectors and thermometers in the
building. The system continuously checks whether or not there
is any room that exceeds a smoke and temperature threshold.
If this is the case, the alarm value is put on the alarm subject.

B. Implementation and evaluation

The Smart Office application is comprised of 8 modules
that each handle one specific concern of the application. We
manually reviewed the code of each module to determine
the total lines of code and to count the lines of code that
coincide with accidental complexity and essential complexity.
The results of this review are listed in Table III.

1) Complexity: We consider designation, data routing, and
application logic to be essential complexity, because they are
important concerns in every IoT application and are specific
to the application at hand. We found a high percentage of
essential complexity in each of the modules. This indicates
that using observables and other abstractions provided by
Potato enables expressive but succinct programs that focus on
application-specific concern.

Potato programs can still be verbose in certain areas, how-
ever, due to the designation and data routing using observables.
Most of the accidental complexity stems from the fact that the
network is producing raw tagged data, and the programmer
has to filter out the relevant parts of the data by means of
queries and filters. Another source of accidental complexity
is the programmer dealing with the difference between :join
and :leave messages, and thus has to manually keep track of
currently connected nodes, previously designated nodes, etc.
However, we argue that this is a reasonable trade-off as our
approach results in a system that is reactive, expressive, and
scalable. Furthermore, abstractions can be easily built on top
of Potato, thereby offering the opportunity to further reduce
accidental complexity while maintaining its advantages. We
did not yet apply these abstractions in this application.

2) Conclusion: We have validated Potato by implementing
a typical IoT application, which is often used as the example
application in related work. Potato enables developers to write
reactive programs with a holistic view of the network, without
contaminating the code base with a significant amount of
accidental complexity. Furthermore, the application code for
the Smart Office use case shows that Potato applications are
not impacted by the size of the network, and the usability of

the abstractions scales up without requiring additional effort
on the part of developers.

V. RELATED WORK

Our approach is inspired by Regiment [11], a functional
reactive programming language for wireless sensor networks
(WSN) that focuses on spatiotemporal macroprogramming.
Regiment features a network-centric approach, which facil-
itates dealing with larger-scale networks.The programming
language itself is a limited low-level reactive language with a
few primitives such as smap, sfilter, and sfold to process
data coming from the network. In Regiment, a programmer
can create subsets of the network based on its topology (e.g., a
node and all nodes which are maximum n hops away from that
node). In Potato, each node identifies itself to the network by
means of a static node descriptor, and nodes can dynamically
emit events and data, all of which can be used to designate
nodes and create subnetworks.

Several Model-Driven Development (MDD) approaches
have been proposed [6, 5, 9] to address development effort
and platform heterogeneity of IoT systems. MDD can hide
much of complexity from the user by means of extreme high-
level concepts, resulting in a DSL geared towards non-expert
programmers. However, these approaches also tend to be less
flexible compared to using a general-purpose programming
language such as Elixir. In Potato, application and deployment
logic is contained within the first-class reactive programs,
which are plain Elixir programs. The abstractions offered by
Potato offer are comprised of a small set of key language con-
structs that do not reduce generality, and enables programmers
to build more specific abstractions and DSLs on top of it.

Cloud-based applications such as IBM’s Node-RED [14]
feature a visual programming environment for creating data
flow of their entire network. A visual programming approach
improves accessibility, also for non-experts. On the other hand,
developers are still required to write low-level software to
integrate functionality that is not supported out of the box. Fur-
thermore, these approaches are rigid in their network topology
and limited in scalability because they require the programmer
to know the participants of the network beforehand.

VI. CONCLUSION

We presented an approach for facilitating the construction of
IoT systems that combines distributed reactive programming
with first-class mobile reactive programs and event streams.
We found that the use of functional reactive programs to
transform and compose event streams enables a declarative
style of programming that is less sensitive to the scale of the
underlying application. Working with event streams facilitates
dealing with transient failures and dynamic network topolo-
gies. Code mobility also helps in this regard, in addition to
facilitating code deployment, DevOps scenarios, and flexible
edge-computing scenarios.

We implemented our approach in Potato, a library and
middleware based on existing and established programming
technology, and used it to evaluate its use for the construction



TABLE III
OVERIEW OF THE ACCIDENTAL VERSUS ESSENTIAL COMPLEXITY PER MODULE.

Module LOC Designation Routing Logic Accidental Complexity Essential Complexity

Rest Endpoint 56 0 % 35,7 % 60,7 % 3,5 % 96 %
Alarms 17 23,5 % 5,8 % 58,8 % 11,2 % 88 %
Humidity 31 16,1 % 16,1 % 54,8 % 12,9 % 87 %
HVAC 18 33,3 % 5,5 % 44,4 % 16,6 % 83 %
RFID 45 0 % 8,8 % 88,8 % 0 % 97 %
Smoke 33 21,2 % 15,1 % 48,4 % 15,1 % 84 %
Temperature 29 20,6 % 20,6 % 48,2 % 10,3 % 89 %
Weather 11 0 % 9 % 90,9 % 0 % 90 %

and deployment of IoT applications. We conclude that Potato
is able to reduce much of the accidental complexity associated
with constructing and deploying IoT systems.

Future Work

In this work we elaborated mostly on the conceptual ap-
proach and the foundations of Potato, and demonstrated that
distributed reactive programming with first-class mobile reac-
tive programs and event streams is a good fit for building and
deploying IoT applications. However, a real-world implemen-
tation of our approach still requires other important concerns
to be addressed, the most obvious of which is security. We
believe that security can be implemented in the internals of
our middleware by means of a public/private key infrastructure
or code signing. For example, code signed and deployed by
the master node could be authenticated independently by each
node. This idea can also be extended to the subscription to
observables.

Potato is currently also lacking a library of built-in ab-
stractions. For example, although we illustrated how failures
can be handled by creating and orchestrating observables,
this code can be tedious and verbose. We therefore propose
to introduce abstractions to make failure handling and other
important aspects of IoT applications more straightforward,
while retaining the flexibility of Potato.

Finally, Potato is built on top of the Erlang VM, and
therefore currently only runs on full OS nodes such as a
Raspberry Pi. Given these technological foundations, it should
be possible to integrate Android devices and others into the
Potato framework by using C nodes or Java nodes without
much difficulty. This would also enable us to conduct a
thorough performance analysis of Potato applications that are
deployed in IoT environments that also comprise constrained
devices.

REFERENCES

[1] ReactiveX: Observables done right. https://reactivex.io/, 2014. [Online;
accessed 19-April-2018].

[2] Elixir Programming Language . https://hexdocs.pm/elixir/Kernel.html,
2018. [Online; accessed 19-April-2018].

[3] The Erlang Runtime System . https://happi.github.io/theBeamBook/,
2018. [Online; accessed 19-April-2018].

[4] Mussab Alaa, AA Zaidan, BB Zaidan, Mohammed Talal, and MLM
Kiah. A review of smart home applications based on internet of things.
Journal of Network and Computer Applications, 97:48–65, 2017.

[5] Damien Cassou, Julien Bruneau, Charles Consel, and Emilie Balland.
Toward a tool-based development methodology for pervasive computing
applications. IEEE Transactions on Software Engineering, 38(6):1445–
1463, 2012.

[6] Saurabh Chauhan, Pankesh Patel, Flávia C Delicato, and Sanjay Chaud-
hary. A development framework for programming cyber-physical
systems. In Proceedings of the 2nd International Workshop on Software
Engineering for Smart Cyber-Physical Systems, pages 47–53. ACM,
2016.

[7] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesc language: A holistic approach to networked
embedded systems. SIGPLAN Not., 49(4):41–51, July 2014.

[8] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements,
and future directions. Future generation computer systems, 29(7):1645–
1660, 2013.

[9] Vinay Kulkarni and Sreedhar Reddy. Separation of concerns in model-
driven development. IEEE software, 20(5):64–69, 2003.

[10] Edward A Lee. Cyber physical systems: Design challenges. In
Object oriented real-time distributed computing (isorc), 2008 11th ieee
international symposium on, pages 363–369. IEEE, 2008.

[11] Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macropro-
gramming system. In Information Processing in Sensor Networks, 2007.
IPSN 2007. 6th International Symposium on, pages 489–498. IEEE,
2007.

[12] Calton Pu. A world of opportunities: Cps, iot, and beyond. In
Proceedings of the 5th ACM international conference on Distributed
event-based system, pages 229–230. ACM, 2011.

[13] Estefanía Serral, Pedro Valderas, and Vicente Pelechano. Towards
the model driven development of context-aware pervasive systems.
Pervasive and Mobile Computing, 6(2):254–280, 2010.

[14] IBM Emerging Technology Services. Node-RED. https://nodered.org/,
2018. [Online; accessed 19-April-2018].

[15] Alessandro Sivieri, Luca Mottola, and Gianpaolo Cugola. Building
internet of things software with eliot. Computer Communications,
89:141–153, 2016.

[16] Ryo Sugihara and Rajesh K Gupta. Programming models for sensor
networks: A survey. ACM Transactions on Sensor Networks (TOSN),
4(2):8, 2008.

[17] Seved Torstendahl. Open telecom platform. Ericsson Review(English
Edition), 74(1):14–23, 1997.

[18] Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic streams: A
framework for composable semantic interpretation of sensor data. In
Kay Römer, Holger Karl, and Friedemann Mattern, editors, Wireless
Sensor Networks, pages 5–20, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

https://reactivex.io/
https://hexdocs.pm/elixir/Kernel.html
https://happi.github.io/theBeamBook/
https://nodered.org/

	I Introduction
	I-A Problem
	I-B Overview of our approach
	I-C Overview of this paper

	II Overview of Potato
	II-A Reactive programming
	II-B Observables and subjects
	II-C Network
	II-D Nodes
	II-D1 Observing remote node events
	II-D2 Emitting local node events
	II-D3 Code deployment


	III Building Applications With Potato
	III-A Designation of nodes
	III-B Deployment of programs
	III-C Observation of events
	III-D Handling reconnects
	III-E Handling failures

	IV Validation
	IV-A Use Case
	IV-A1 Description
	IV-A2 Data flow

	IV-B Implementation and evaluation
	IV-B1 Complexity
	IV-B2 Conclusion


	V Related work
	VI Conclusion
	References

